http://digilander.libero.it/Dany_Aerospace/Messerschmitt/Me262_Mission.m
Prerequisiti: un minimo di conoscenze di Meccanica del Volo e di MATLAB. Per la Meccanica del Volo sono necessarie un minimo di Matematica (Analisi 1, ma neanche), un po' di Fisica (Meccanica del punto materiale) ed elementi di Aerodinamica. Per il MATLAB... un po' di informatica e conoscenza del linguaggio MATLAB.
Anderson, John D. Jr. - Introduction to Flight - McGraw-Hill International Edition
ISBN 007-123818-2
%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Messerschmitt Me-262 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
clc
format short g
% Aircraft data
b = 12.50 % wingspan (m)
S = 21.70 % wing area (m^2)
hw = 1.5 % wing height from ground (m)
Wg = 6400*9.8 % gross weight (N)
W = 5000*9.8 % average weight (N)
We = 3800*9.8 % empty weight (N)
cL_max = 2.0 % max lift coefficient
cDo = 0.020 % zero-lift drag coefficient
e = 0.7 % Oswald efficiency factor
AR = b^2/S % aspect ratio
Ta_max = 2*900*9.8 % max trhust available (N)
%% Mission briefing:
%% 1) Takeoff
%% 2) Climb at 6,000 meters
%% 3) Cruise
%% 4) Gliding
%% 5) Landing
%% 1) Calculation of the takeoff distance on runway
rho = 1.225 % air density at sea level
g = 9.8 % gravity acceleration
mr = 0.02 % runway friction coefficient
Vmin = sqrt(2*Wg/(rho*S*cL_max)) % stall speed
Vto = 1.2 * Vmin % takeoff speed
phi = (16*hw/b)^2/(1+(16*hw/b)^2) % coefficient due to ground effect
D = 0.5*rho*(0.7*Vto)^2*S*(cDo+phi*cL_max^2/(pi*AR*e)) % average drag
L = 0.5*rho*(0.7*Vto)^2*S*cL_max % average lift
dto = 1.44*Wg^2/(rho*S*cL_max*g*(Ta_max-D-mr*(Wg-L))) % takeoff distance
%% 2) Calculation of the max rate of climb
h = 6000 % cruise altitude
rho_h = 0.66011 % air density at 6000 meters
for i = 1:300
V(i) = i;
q(i) = rho*V(i)^2/2; % dynamic pressure
cL(i) = Wg/(q(i)*S) ; % lift coefficient
cD(i) = cDo + cL(i)^2/(pi*e*AR); % drag coefficient
Pr_zl(i) = q(i)*S*V(i)*cDo; % power due to zero-lift drag
Pr_id(i) = q(i)*S*V(i)*cL(i)^2/(pi*AR*e); % power due to induced drag
Pr(i) = Pr_zl(i) + Pr_id(i); % power required at sea level
Pa(i) = Ta_max * V(i); % MAX power available at sea level
EoP(i) = (Pa(i) - Pr(i)); % excess of power
RC(i) = (EoP(i))/Wg; % R/C = excess of power / weight
RC_mpm(i) = RC(i) * 60; % meters per minute
RC_mpm_h(i) = RC_mpm(i) * rho_h/rho; % rate of climb at 6000 meters
end
RCmax = max(EoP)/Wg % max rate of climb at sea level
RCmax_mpm = RCmax * 60
RCmax_h = RCmax * rho_h/rho % max rate of climb at 6000 meters
RCmax_h_mpm = RCmax_h * 60
plot (V,Pa, 'r.')
hold on
plot (V,Pr_zl, 'g.')
hold on
plot (V,Pr_id, 'b.')
hold on
plot (V,Pr, 'k.')
grid on
title ('Me-262 - Power required and power available at sea level')
xlabel ('Velocity (m/s)')
ylabel ('Power (W)')
axis ([0 300 0 5e6])
legend ('MAX power available', 'power due to zero-lift drag',...
'power due to induced drag', 'power required')
figure
plot (V,RC_mpm, 'g.')
hold on
plot (V,RC_mpm_h, 'b.')
grid on
title ('Me-262 - Rate of Climb')
xlabel ('Velocity (m/s)')
ylabel ('Rate of Climb (m/min)')
axis ([0 300 0 2000])
legend ('sea level', '6000 meters')
av_RC = (RCmax + RCmax_h)/2 % average rate to climb
av_RC_mpm = av_RC * 60
time = h/av_RC % approx. time to climb
%% 3) Cruise flight
Ta = 0.8 * Ta_max * rho_h/rho % cruise thrust available at 6000 meters
for i = 1:300
V(i) = (i+34)*sqrt(rho/rho_h);
q(i) = rho_h*V(i)^2/2;
Tr_zl(i) = q(i)*S*cDo; % thrust due to zero-lift drag
Tr_id(i) = W^2/(q(i)*S*pi*e*AR); % thrust due to induced drag
Tr(i) = Tr_zl(i) + Tr_id(i); % thrust required
cL(i) = W/(q(i)*S);
cD(i) = cDo + cL(i)^2/(pi*e*AR);
E(i) = cL(i)/cD(i); % aerodynamic efficiency
end
figure
plot (V,Tr_zl, '.g')
hold on
plot (V,Tr_id, '.r')
hold on
plot (V,Tr, '.k')
hold on
plot (V,Ta, '.b')
grid on
axis ([0 300 0 1.5e4])
title ('Me-262 - Thrust required curves at 6000 meters')
xlabel ('Velocity (m/s)')
ylabel ('Thrust (N)')
legend ('thrust due to zero-lift drag','thrust due to induced drag',...
'thrust required', 'thrust available')
figure
plot (V,E, '.')
grid on
axis ([0 300 0 20])
title ('Me-262 - Aerodynamic efficiency')
xlabel (' Velocity (m/s)')
ylabel ('E = cL/cD')
Tmin = min(Tr) % min thrust
Emax = max(E) % max aerodynamic efficiency
VTmin = sqrt(Tmin/(rho_h*S*cDo)) % min thrust (max efficiency) airspeed
VTmin_KPH = VTmin * 3.6
%% 4) Calculation of the max range in gliding flight
theta = atand(1/Emax) % glide angle at max efficiency
range = h * Emax % max range in gliding at 6000 meters
%% 5) Calculation of the landing distance on the grass
Vmin = sqrt(2*We/(rho*S*cL_max)) % stall speed
Vl = 1.3 * Vmin % landing speed
mg = 0.60 % grass + brake friction coefficient
D = 0.5*rho*(0.7*Vl)^2*S*(cDo+phi*cL_max^2/(pi*e*AR)) % average drag
L = 0.5*rho*(0.7*Vl)^2*S*cL_max % average lift
dl = 1.69*We^2/(g*rho*S*cL_max*(D+mg*(W-L))) % landing distance
Nessun commento:
Posta un commento